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Deformations of the Bifurcation Diagram 
Due to Discretization 

By J. Bigge and E. Bohl 

Abstract. With a singular perturbation problem occurring in chemical reaction processes, 
substantial changes of the bifurcation diagram due to discretization are demonstrated. It is 
shown that a discrete system can possess any number of solutions, whereas the underlying 
continuous problem has exactly one solution. In addition to that, there is no way to favor one 
of the various discrete solutions as the one approximating the continuous solution. 

1. Introduction. It is well-known that the steady state of evolution processes in one 
space dimension is described by an ordinary boundary value problem of the type 

(la) -x''+Px' + Juf (X,x) = on [0, 1] 
(lb) x(0) = x(l) = w. 

For transport phenomena arising in chemistry or biology x", vx' and llf(x, x) 
represent diffusion, convection, and generation, respectively. In these applications 
the real parameters v, ,u and w naturally satisfy 

(Ic) v > 0, t > 0, w > 0. 

Furthermore, X stands for a parameter vector in R' with nonnegative components 

(Id) Xi > 0, i = 1,....m. 

The various constants may be viewed as control parameters. A typical problem is to 
describe the solution set of (1) with respect to some of these control parameters 
keeping all the others fixed. We call bifurcation diagram any two-dimensional 
representation of the solution set where the actual control parameter serves as 
abscissa and a functional of the corresponding solution as the ordinate. Often, 
details of the global picture of the resulting bifurcation diagram are wanted [7], [8], 
[11]. It often happens that general bifurcation theory cannot provide the information 
and numerical techniques are used. Standard discretizations are being applied on a 
grid consisting of a moderate number of grid points, say 10 to 20. Retreating to 
numerical analysis techniques, one tacitly hopes that the continuous situation is 
represented in a reasonable way. However, a number of recent papers, e.g., [1], [2], 
[3], [5], [13], show that the bifurcation diagram of a problem of the form (1) may 
undergo deformations if one passes over to discrete analogues of (1). As a result, the 
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diagram of the discrete problem may even fail to show qualitatively the correct 
response of the equation (1) to alterations in the control parameters v, tt or A. 

In Section 3 of this paper we describe conditions on f(A, x) such that standard 
discrete versions of (1) admit a number of solutions which depends on the qualitative 
behavior of f and upon the ratio of the control parameter and the step width of the 
underlying grid. The idea is very elementary and suggests that the phenomenon of 
multiple solutions is not a matter of a particular finite-difference approximation for 
fairly general nonlinearities f. It rather is a natural phenomenon due to the process 
of substituting (1) by a finite-dimensional system. This process introduces a new 
parameter h ( = the step width) which has the effect of a sort of "unfolding", giving 
rise to dramatic changes of the bifurcation diagram of (1). We begin in Section 2 
with numerical examples using functions f(A, x) which occur in biological or 
chemical reaction processes. 

2. Numerical Examples. Consider the problem 

(2a) XX" + A + Lx on [O,1], (2a) -x" + Ox' + 1 + x + i" kX2 + X2X 
3 

(2b) x(O) = x(1) = w. 

The generation term appearing in (2a) is quite common in enzyme kinetics: for 
A1 = A2 = 0 it describes the usual Michaelis-Menten kinetics, for A2 = 0 we have a 
substrate inhibited process, and the general expression arises under even more 
complicated conditions of three intermediate enzyme-substrate complexes [5b], [7], 
[8]. 

To any set of parameters v, AI, w, Ai > 0 (i = 1, 2) there exists a solution xV of (2) 
satisfying 

(3) 0 < xV(s) < w on (0, 1) or Xv W. 

w 

FIGURE 1 

Qualitative bifurcation diagram for problem (2) (X1 # 0 or 2 # 0) 
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This is a consequence of maximum principle techniques as outlined in [9], [14]. Only 
solutions satisfying the a priori bounds (3) are of interest in the applications. If 
A1 = A2= 0, there is exactly one solution with (3) and this is also true for the 
standard second-order finite-difference approximation of (2). Here, again, the maxi- 
mum principle may be applied (see [Sb]). There are further finite-difference ap- 
proximations of higher order amenable to the application of the maximum principle 
and thus yielding the existence and uniqueness result stated (see [Sb]). As a 
consequence, in these cases there is no qualitative difference of the bifurcation 
diagram between the continuous and the discrete case with respect to any of the 
parameters w, v or [i left in the equation. If, however, A1 # 0 or A2 # 0, there are, in 
general, more than one solution of (2). A qualitative picture of the bifurcation 
diagram is given in Figure 1 (w = control parameter, the ordinate in Figure 1 
represents the value of a norm of the solutions on the branch). 

What has been outlined in the previous paragraph holds also for our second 
example 

(4a) -x" + vx' + ,a(x - 1) exp(-1+ ) =0, 

(4b) x(0) = x(1) = 0. 

The a priori bound (3), however, must be replaced by 

(5) 0 < x-(s ) < I on (0, 1). 
The generation term of (4) is known from a first-order exothermic chemical reaction 
[Sb]. 

Our numerical calculations are based on the finite-difference substitutions 

(6a) x'(s) - h-1(-x(s - h) + x(s)), 

(6b) x"(s) h-2(x(s - h) - 2x(s) + x(s + h)). 
The following results are obtained on an equidistant grid of 9 grid points in (0, 1) 
(i.e., h = 0.1). 
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FIGURE 2 

Solution branch of Example (2) 
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TABLE 1 

Turning points of the branch of Example (2) 

Q 0.1 1.717 0.523 1.886 0.820 2.046 1.103 

YM(Q)1L 4.499 4.481 4.247 4.022 3.907 3.591 3.561 

Q 2.217 1.381 2.396 1.655 2.585 1.927 2.782 

jjY(Q)M1j 3.185 3.207 2.799 2.880 2.431 2.521 2.073 

Q J 2.195 2.987 2.464 3.170 2.712 6.180 

IPY(Q)IIi j 2.190 1.724 1.855 1.393 1.528 0.526 

TABLE 2 
9 solutions of Example (2) for Q = 2 

t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

.'(Q, t) 0.3565 0.7844 4.850 4.997 
0.3565 0.7833 4.751 4.995 
0.3561 0.7448 1.212 4.891 4.997 
0.3561 0.7448 1.209 4.647 4.992 
0.3561 0.7444 1.176 1.702 4.915 4.998 
0.3561 0.7444 1.176 1.697 4.515 4.990 
0.3561 0.7444 1.176 1.671 2.298 4.937 4.998 
0.3561 0.7444 1.176 1.671 2.289 4.215 4.984 
0.3561 0.7444 1.176 1.671 2.276 3.172 4.960 4.999 

Example (2): A1 = 30, A2 = 0, V = 103, w = 5 and 1i = 106Q-1 with Q = control 

parameter. The results of the numerical experiment are given in Figure 2. Table 1 

contains all turning points of the branch and Table 2 shows all solutions for Q = 2 

(i.e., 2Mu = 106). Note that all results correspond to y = w - x = 5 - x rather than 

to x. The blanks in Table 2 stand for function values > 4.999 and < 5.0. Here and 

in the following we use the norm 

Ijy(Q) 11 = h E Iy(Q, S) I 
S 

where s runs over the grid points. y(Q, s) stands for the s th component of the vector 

Y(Q). 
Example (4): tL = 1012, v = 103 and A1 = control parameter. The results of this 

experiment are summarized in Figure 3. Again, Table 3 shows all turning points of 

the branch and Table 4 gives all solutions for A1 = 24. The blanks in Table 4 stand 

for function values > 0.999 and < 1. 
Both examples show more than just one hysteresis loop and consequently more 

than two singular points on the branch. The theory outlined in the next section will 

tell us that, depending upon the ratio of the control parameter and the step width, 

any number of solutions (of hysteresis loops) may be constructed. All of them satisfy 

the qualitative characteristics (one maximum point, a priori bounds etc.) suggested 

by the applications (biology or chemistry) so that, from merely glancing at the 

figures, there is no way of ruling out one of these solutions against others. Also, 

stability would not favor just two steady states: stable and unstable parts of the 

branches take turns at any turning point. 
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TABLE 3 
Turning points of the branch of Example (4) 

xi I 18.00 30.87 22.60 30.89 22.92 30.89 23.15 30.89 

|IX(Xi)IIj 0.899 0.886 0.806 0.787 0.709 0.687 0.612 0.587 

XIl 23.34 30.89 23.49 30.89 23.63 30.89 23.74 30.89 

!Ix(X)lll 0.516 0.487 0.420 0.386 0.325 0.287 0.227 0.187 

xil 23.85 30.87 23.91 34.53 

lIX( X1)I1 0.132 0.087 0.039 0.4 10-6 

TABLE 4 
19 solutions of Example (4) for XA = 24 

t 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

x(X1, t) 0.9983 
0.2160 0.9987 
0.0149 0.9983 
0.0063 0.2129 0.9986 
0.0042 0.0198 0.9983 
0.0041 0.0109 0.2105 0.9986 
0.0041 0.0088 0.0250 0.9983 
0.0041 0.0087 0.0160 0.2077 0.9986 
0.0041 0.0087 0.0140 0.0311 0.9983 
0.0041 0.0087 0.0139 0.0219 0.2043 0.9986 
0.0041 0.0087 0.0139 0.0200 0.0382 0.9984 
0.0041 0.0087 0.0139 0.0198 0.0286 0.2000 0.9986 
0.0041 0.0087 0.0139 0.0198 0.0268 0.0467 0.9984 
0.0041 0.0087 0.0139 0.0198 0.0267 0.0367 0.1943 0.9986 
0.0041 0.0087 0.0139 0.0198 0.0267 0.0351 0.0574 0.9984 
0.0041 0.0087 0.0139 0.0198 0.0267 0.0349 0.0467 0.1859 0.9986 
0.0041 0.0087 0.0139 0.0198 0.0267 0.0349 0.0453 0.0718 0.9984 
0.0041 0.0087 0.0139 0.0198 0.0267 0.0349 0.0451 0.0601 0.1826 
0.0041 0.0087 0.0139 0.0198 0.0267 0.0349 0.0451 0.0586 0.0771 

One might conjecture that the described effect of discretization on the bifurcation 
diagram is due to the large convection term 103x' present in both examples. Indeed, 
the analysis of the next section depends heavily on the presence of this term. 
However, we mention in passing that the discrete branch (h = 0.1) of Example 4 
with tL = 1012, XA = control parameter and v = 0 (i.e., convection does not take 
place) has more than two singular points, among them at least four bifurcation 
points. From these bifurcation points further branches of asymmetric solutions 
emanate. In contrast to these phenomena occurring in the discrete problem, the 
existence of bifurcation points on the symmetric branch belonging to the continuous 
problem (4) are excluded by the theory in [2]. 

3. Two Theorems. Consider the singular perturbation problem 

(7a) -ex" + x' = f( X, x) on [0, 1], 
(7b) x(0) = x(l) = 0, 
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FIGURE 3 

Solution branch of Example (4) 

with a real control parameter X > 0 and a small parameter 0 < E << 1. Using the 
usual difference substitutions (6) we obtain the discrete analogue for (7) 

(8a) x(O) = 0, 
(8b) h-2(-(e + h)x(sj-1) +(2E + h)x(s) - ex(s +J)) 

f (x, x(S)), j=1,...,M, 

(8c) x(1) = 0, 

on the grid Qh = {sj =jh: h (M + 1)-i, j = 0,. ..,M + 1}. If E = 0, the system 
reduces to 

(9a) x(O) = 0, 

(9b) x(sj) = x(s-11) + hf(X, x(s1)), j = 1,... 

(9c) X(1) = 0. 

A solution of (9) is a grid function x = (x(O), x(s1),. ,x(SM), x(l)) E Rh. By (9b) 
the value x(sj) marks the intersection of the graph of 

(10) Y -*f (X, Y) 

with the straight line 

(11) y -* h-1(y - 
X(sj-J)) 

This process defines one component of x at a time as shown in Figure 4. If the 
graph of f and the slope h-1 of the straight lines (11) allow for more than one 
intersection point, the possibility of more than just one solution to the system (9) 
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X ISt X (/s ItS 
FIGURE 4 

Intersections of the graph off with the straight lines (11) 

arises. Clearly, the number of solutions then depends upon how many of the straight 
lines (11) intersect the graph of (10) how many times. A graph of f qualitatively 
given in Figure 4 allows straight lines of the form (11) to intersect in one, two or 
three points. Such a graph is ensured by the following assumptions fl and f2. Let 
0 < 181 < 182, 0 < w and let U c R2 be an open set containing f1, 21 x [0, w]: 

fl: f E C??(U), f(X, w) = 0 for X E [91, f21, 
f(X, x) > 0 for fB1 < A < f92, 0 < x < w,fx(X, x) < 0 for /3, < A < B2, 0 < 
x < w. 

f2: There exists a real nondecreasing function u(X) on [ 1,21 such that 
0 < u(X) < wfxxx(X, u(X)) < 0 for fl < X < f2, and 

fXX(X' Xf > 0 for < x < u(X), f~x( x)\< 0 for u(X) < x < w. 

f3: There exist real numbers yl, Y2, B1 < 71 < 72 < fB2 such that the following is 
true: 

(a) for 
fl, < A < ry all solutions - of y = hf (X, y) satisfy y E (u(X), w]. 

(b) hfx( X, u()) ( < 1 for y2 < X < f2* 

The assumption f3 serves two purposes: Part (a) ensures that all solutions of (9) 
for X near 81 have components close to w. On the other hand, (b) implies 

(12) hfx(y2, u(y2)) = 1, 

so that any straight line (11) intersects the graph (10) for X = Y2 just once. The 
process of solving our system (9) in this particular situation is indicated in Figure 5. 
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(h) Sz(kh) u(y2) z((k+l)h) Y 

FIGuRE 5 

Determination of the number k due to (12), (13). Here: k = 7 

Let this process yield the solution (Y2' z), where z has the components z(jh) 
(j = ... . ,M + 1). Then a natural number k is uniquely determined by 

(13) z(jh) < u(y2) (I 1,...,k), u(y2) < z((k + 1)h). 

This number k will define the number of hysteresis loops exhibited by a solution 
branch of (9), as stated in the following theorem. 

THEOREM 1. Let h > 0 be fixed. Under the assumptions fl-f3 there exists a smooth 
(= C?) branch (X(a), x(a)) (a E [0, 1]) of solutions of (9) such that 

(a)O <x(a,s) < wfora E [0,1],s Es-h\tol. 
(b) X(a) : X(T) or x(a) + x(T) (a + T, a, T E [0, 1]), X(O) = 1, X(1) = 92- 

(c) For X E 1, /2] all solutions of (9) subject to the a priori bound given in (a) are 
on the branch (X(a), x(a)). 

(d) The function X(a) has exactly 2k relative extreme points in (0,1) where k is 
defined by (13) above. 

Remark. By the assertion (d), the branch (X(a), x(a)) shows k hysteresis loops in 
the (X, x)-diagram. Hence, the system (9) may have up to 2k + 1 different solutions 
for some parameter X = X(a). 

As an illustration, take the system (2) with X 2 = 0. In the new variable y = w - x 
the nonlinearity has the form 

(14) f (X,y) =106K-1 W Y 

1 + (w - y) + 30(w _ 
y)2 

The graph of this function is qualitatively given in Figure 5. The function u(X, w) 
mentioned in assumption f2 depends on w. It turns out that for any fixed X, this 
function monotonically approaches infinity for increasing w. We can choose the 
interval [0, u(X, w)] as long as we want if we increase the parameter w. Proceed now 
as follows: Fix h > 0 and find Y2 such that (12) is satisfied. By an elementary 
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discussion of the graph of f in (14) the construction of Y2 is possible, independently 
of w. Now, the process illustrated in Figure 5 may be applied k times for any given 
k E N. This defines w. The resulting function f yields a corresponding function X(a) 
of Theorem 1 which has exactly 2k relative extreme points in (0, 1). 

Sketch of the Proof of Theorem 1 (for details see [4]): Let I = B1, fB21, D = {(X, x) 
E I X Rgh: 0 < x(sj) < w for j = 1,...,M)} and let the matrix A E L[Rgh] be 
defined by the left-hand side of (8) for - = 0. The right-hand side of (8) defines the 
function F(X, x) which maps D into Rgh. The step width h is fixed. Finally, the 
operator T(X, x) = Ax - F(X, x) is defined on D and has values in RWh. The 
objective is to describe the set T-1(0) = {(X, x) E D: T(X, x) = 0 }. It is a technical 
matter to see that under our assumptions T-1(0) is a one-dimensional differentiable 

manifold with boundary (see Section 2, Lemma 4 of [12]). Since the equations 

(15) T(fli,x)=0 (i=1,2) 

have a unique solution x' (i = 1, 2), the boundary aT-1(O) of T-1(0) is given by 

(16) aT-1(0) = { (f1, X1), (132, X2)}- 

Furthermore, we learn from the Theorem in the appendix of [12], that the compact 
set T-1(0) is a disjoint union of finitely many connected components, and any of 
these components is either diffeomorphic to [0, 1] or to the unit circle S1 in the 
plane. Since there is a unique solution of the equations (15), there is exactly one 
component of T-1(0) which is diffeomorphic to [0,11. This component represents a 
C?C-solution branch which we write in the form 

(17) (X(a),x(a)), a E [0,1]. 

This branch satisfies our statements (a) and (b) of Theorem 1. The corresponding 
function X(a) has Property (d). Indeed, let k be the number defined in (13), where 
the vector z represents the unique solution of the system T(y2, x) = 0. Then, one can 
show for any j E {1,. . . , k }, there are exactly two parameter values a1j, a2j E (0, 1) 
such that 

(18) X'(a1l) = X'(a2j) = 0, X"(a11) 1 0, "(a21) + 0, j = 1,... ,k. 

Since air * apq (i 0 p or r 0 q) we have constructed 2k different extreme points of 
the function X(a) and these are all extreme points of X(a) in (0, 1). 

To complete the proof of Theorem 1 we must exclude the possibility of compo- 
nents diffeomorphic to S1 in the set T-1(0). This is a rather lengthy and technical 
argument which we omit here. 

THEOREM 2. Under the assumptions fl -f3 there exists -o > 0 such that for any 
E e [0, E0] the full problem (8) admits a branch of solutions (X(c, a), x(E, a)), a E [0, 1I 

such that 
(a) X(E, a), x(E, a) are C'-functions on [0, Eo] X [0, 1]. 

(b) 0 < x(E, a, s) < w for E E [0, E], a E [0, 1], s E Qh \ {o,1, X(, 0) 

1 X(E, 1) = /2- 

(c) For X E [E1, f21 all solutions of (8) subject to the a priori bound given in (b) are 
on the branch (X(c, a), x(E, a)). 
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(d) X(c, a) -- X(a), x(E, a) -- x(a) as 0, where (X(a), x(a)) is the solution 
branch of (9) described in Theorem 1. 

(e) For any E E [0, Eo] the function X(c, a) has at least 2k relative extreme points in 
(0, 1) where k is the number defined by (13) and referred to in (d) of Theorem 1. More 
precisely, any of the 2k extreme points of the function X(a) of Theorem 1 produces 
exactly one extreme point of the perturbed function X(c, a). 

Sketch of the Proof (for the details see [4]): The statements (a)-(d) are an 
immediate consequence of a perturbation argument based on the results of Theorem 
1. It is a straightforward application of the implicit function theorem. This way of 
reasoning, of course, only yields that the perturbed branch is closed to the unper- 
turbed branch (17). However, one can also prove a perturbed version of (18). More 
precisely, for any unperturbed a1j, a2j E (0,1) (j = 1,... ,k), as given in (18), there 
exist small intervals I(a1j), I(a2j) C [0, 11 ( = 1,. ..,k) about auj, a2j such that for 
exist-[,- Iteeexs nqu I 

= 

1j' 2a any E E [0, EoI there exist unique af, E 1(a1), a2j E 
I(a2j) 

(j = 1,. . . ,k) such that 

a,, + aNq (ih/p, r 0 q), +X(E, af,) = a X(? a2) = 0, 

(19) a2 

~X (E, a) 0 0 for a E- I(al j) U I(a2j)- 

This means that any extreme point a1j, a2j of X(a) yields exactly one extreme point 
of X(a, E) for - E [0, Eo] in a small neighborhood I(a1j), I(a2j). 

This is our 
statement (e), so that the proof of Theorem 2 is complete. 

The Example (4) has also been considered by H. 0. Kreiss. He has used his 
grid-finding procedure [10], which could find only one solution for some X1 e (26,30). 
Grid-finding procedures are naturally only aimed at approximate solutions of the 
continuous problem, which has exactly one solution in Example (4). The grid-finding 
procedure excludes the many solutions of the discrete system on a fixed grid due to 
the fact that the spurious solutions are normally very sensitive to a change of the 
grid. Kreiss' findings suggest that some variation of the grid is important for a 
sensible numerical treatment of nonlinear boundary value problems. Example (2) 
provides an interesting situation for v = 0, X, = 30, X2 = 36, la = 103 and w = 
control parameter. The resulting branch shows at least 10 turning points on a grid of 
9 points in (0, 1) (h = 0.1). If we go for 39 grid points in (0, 1) (i.e., h = 0.025), then 
the branch is smoothed out with only 2 turning points left. We stress that, with 
substantial influence of a convection term (as in the examples of Section 2), one 
would need far more equidistant grid points to achieve a bifurcation diagram which 
resembles the one of the continuous problem at least qualitatively. In the case of the 
Example (4) we would have to allow for as many as 107 equidistant points, assuming 
the discrete model (8). 
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